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Abstract
An exact formula for the free energy of a planar array of ψ4 chains with next-nearest-neighbour
(nnn) interaction is obtained, and the analogy with the Ising model is discussed.

In a previous paper [1], we proposed a simple method allowing,
in principle, the exact evaluation of the free energy of a planar
array of Ginzburg–Landau chains with nearest-neighbour (nn)
inter-chain interaction. This method can be extended to 3D [2]
and, in 2D, to the case when the next-nearest-neighbour (nnn)
inter-chain interactions are taken into account. We shall
discuss here this second issue. A more detailed variant of this
discussion can be found in [3].

So, we shall consider a planar array of Ginzburg–Landau
chains, described by the functional

FGL[ψ] =
N∑

j=1

∫ L

0

dx

ξ0

[
aψ2

j + bψ4
j + c

(
dψ j
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)2
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(
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(
ψ j+2 − ψ j

)2
]

(1)

where the field ψ j (x), on the j th chain, is real and satisfies
cyclic boundary conditions. The parameters a, b, c, ξ0 have
the same meaning as in [1]; c1 corresponds to c⊥ of [1]. The
transfer matrix Hamiltonian, associated with (1), is
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j=1

[
− 1

2m

∂2
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j
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]
. (2)

Following closely the approach described in [1], we obtain
the free energy of the system:

F = N�0
kBT τn

2π

√
1 + 2 (c1 + c2)

a′τn�
2
0

E (k1, k2) (3)

where τn = t − tn, tn = 1 − 2
a′ (c1 + c2) and

E (k1, k2) =
∫ π

2

0

√(
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1 sin2 θ
) (
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2 sin2 θ

)
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k2
1, k2

2 are parameters depending on c1, c2. If c1 > 0, c2 <

0, c1 > |c2|, they satisfy the conditions

k2
1 > k2

2 > 0; k2
2 → 0 if c2 → 0. (5)

The function E(k1, k2) can be considered a generalization of
the complete integral of the second kind, E(k). For k2 =
0, corresponding to the case when the nnn interaction is
neglected, E(k1, 0) = E(k1), and (3) reduces to our previous
result, equation (69) of [1]. In the general case, using the
formulae (252.19) and (262.17) of [4], E(k1, k2) can be put
in the form

E (k1, k2) = − 1

2α2
(
α2 − 1

) 1√
1 − k2

2

[
α2 E + (

k2 − α2
)

K + (
2α2 − α4 − k2

)

(α2, k)

]
(6)

where

α2 = − k2
2

1 − k2
2

< 0, k2 = k2
1 − k2

2

1 − k2
2

(7)

and the conventions of [4] for elliptic integrals and functions
have been adopted.

The formulae (3) and (6) give the exact expression for the
free energy of our system, (1). Let us briefly discuss the critical
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behaviour of the system. According to (3) and (7), the free
energy is proportional to

−k2
2

(
1 − k2

2

)
E(k)+ k2

1

(
1 − k2

2

)
K (k)

+ (
k2

1k2
2 − k2

1 − k2
2

)

(α2, k). (8)

The singularities of this expression might appear at k = 1,
due to K (k) and 
(α2, k) terms. In fact, with (410.01) and
(904.01) of [4], we can see that these singularities compensate
each other, and, for k2 → 1, the most singular contribution is
proportional to

k ′2 ln
1

k ′ . (9)

This cancellation is quite similar to that obtained by Fan
and Wu [5] in their calculation of the specific heat of a 2D Ising
model with nnn interaction. The term (9) gives a logarithmic
singularity of the specific heat, which occurs at a critical
temperature given by the equation k = 1 or, equivalently (see
equation (8)), k2

1 = 1. So, the presence of a nnn term does not
change qualitatively the critical behaviour of the system.

The influence of the nnn interaction on the critical
behaviour for the Ising model was a subject of intensive
debate (as is quite generally accepted, the planar array of

Ginzburg–Landau chains belongs to the 2D Ising universal-
ity class). The conclusion of several analytical approxima-
tions [5, 6] and Monte Carlo simulations [7, 8] is that the nn
Ising critical behaviour is not qualitatively modified by the nnn
interaction, at least for small values of the coupling constant c2.

Our result agrees with this conclusion. As (3) is also
the ground state energy of the chain of quantum anharmonic
oscillators coupled via nn and nnn interactions, described by
the transfer matrix Hamiltonian (2), the same result can be used
in the study of quantum phase transitions in this system.
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